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The generation of cross-waves in a long deep 
channel by parametric resonance 

By A. F. JONES 
Department of Mathematics, University of Manchester 

(Received 22 December 1977 and in revised form 1 September 1983) 

The evolution equations are obtained which govern the growth of cross-waves 
generated in a long deep channel by a wavemaker with small amplitude when the 
waves are modified by finite-amplitude effects. The linearized equations are compared 
with previous theoretical and experimental work. Some numerical solutions are 
obtained for illustration. 

1. Introduction 
Cross-waves are waves that have their crests at right-angles to the wavemaker. 

Although they have been known for a considerable period of time, their analysis 
presents great mathematical difficulties owing to the fact that the linearized 
equations contain no mechanism for getting energy out of the wave. Thus, if energy 
is transferred directly into the wave by, say, oscillating an asymmetric wavemaker 
at  one of the natural cross-wave frequencies, then the linearized prediction is that 
the cross-wave will grow indefinitely. However, this does not happen in practice, the 
difficulty being resolved by the fact that terms which are neglected in the linearized 
formulation provide a low-level energy drain which, as the wave amplitude grows, 
eventually becomes comparable to the direct energy feed. This problem has recently 
received a thorough theoretical and experimental study by Barnard, Mahony & 
Pritchard (1977). 

An even more complex problem is cross-wave generation by a symmetric wavemaker 
(i.e. one independent of channel width). For this the linearized equation predicts that 
there is no feed of energy into the cross-wave and hence that it should not be present. 
Nevertheless, in practice they are observed to exist. Experiments that create 
cross-waves have their wavemakers oscillated at a frequency one-half that of the 
natural cross-wave frequency, and this suggests that their generation mechanism is 
by parametric resonance, i.e. the cross-wave (a small component of which is assumed 
to be initially present) interacts with the basic motion forced by the wavemaker and 
by so doing transfers energy into the cross-wave. Provided this influx is greater than 
any loss of energy which may also be occurring, then the cross-wave grows. Both the 
energy-gain and the energy -loss mechanisms are relatively low-level affairs, in 
comparison with the forces represented by the usual linearized water-wave equations, 
and so we expect to find that the cross-wave has a fixed form, dictated by the linear 
equations, but to have an amplitude that varies slowly both with time and position 
along the channel according to the exact details of how the energy is provided. 

That the parametric-resonance mechanism is indeed capable of generating cross- 
waves was first shown by Garrett (1970).  He linearized the equations of motion about 
the amplitude of the disturbance and averaged them in the direction parallel to the 
crests, eventually obtaining Mathieu’s equation, from which he showed that an 
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instability was present with the expected frequency. He also discussed how nonlinear 
terms should modify his theory. Later Mahony (1972) improved on this analysis by 
retaining the dependence on the crest direction. At about the same time experiments 
on cross-waves confirming Mahony’s results were performed by Barnard & Pritchard 
(1972). 

Their analysis had the unsatisfactory feature that the linearization about the 
cross-wave amplitude, rather than the directly forced wave amplitude, obliges one 
to omit terms in the equation of a larger order of magnitude than those being retained. 
This was done on the grounds, reasonable a t  first sight, that they do not have the 
correct form to affect the resonance. However, although these terms cannot contribute 
directly, it turns out that they can contribute indirectly, and that linear terms result 
of the same order of magnitude as those already retained. Also, besides the 
energy-transfer mechanism delineated by Garrett (work done by pressure forces 
within the fluid itself), work is also done on the cross-wave directly by the wavemaker 
itself. In  the experiments of Barnard & Pritchard both of these effects were relatively 
small, which explains their good agreement with previous theory, 

The approach in this paper is to retain all the nonlinear terms initially and to 
develop a uniformly asymptotic solution based on the small amplitude of the 
wavemaker. This has the additional virtue that the results apply over long periods 
of time and not just to the initial stages of growth, as with Mahony’s analysis. This 
can be done by first finding the ‘natural’ solution to the problem (the solution forced 
by the wavemaker) and then by looking for the cross-wave as the difference between 
the general solution and this forced solution. By this means, a homogeneous set of 
equations is obtained for the cross-wave in which the forced solution appears in the 
coefficients, and such equations can be solved by standard methods. Actually it is 
not necessary to use the exact forced solution in this procedure - it is sufficient to 
use merely the first-order approximation to it since the non-homogeneous terms that 
then result are formally small. 

We model the situation as follows. A channel with rigid, vertical walls at IJ = 0 and 
ij = 1 extends indefinitely in the x-direction and contains water of infinite depth. The 
positive z-direction is upwards. A wavemaker is located a t  x = 0 and can be 
represented by 

P = uj(q sin 2 d .  (1) 

where a is the maximum displacement of the wavemaker. The flow is assumed to be 
incompressible, inviscid and irrotational. Dimensionless variables are defined using 
u as amplitude scale, g / a 2  as lengthscale and a-l as timescale, where g is the 
acceleration due to gravity. Then the equations to be satisfied are 

-+<=-+-- 34 a4 on z = &  a4 
at axi ax$ 

d+O as z-t-m, 
34 dfW - - E - - sin 2t = 2f (2) cos 2t ax dzaz 

on x = ef( x) sin 2t ,  

a4 
aY 
- = 0  on y = o , l ,  
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and also a radiation condition for large x. In  these equations, velocity u = V#, 
6(x, y)  = surface displacement, 1 = ba2/g,  and E = ag2/g (the summation convention 
applies to subscripted variables). The initial conditions are discussed later. 

We make the usual assumption that E 4 1 (small-amplitude waves). Then there 
is a first-order solution which one obtains by putting E = 0 in (2) and then solving 
the linear equations that result. It is 

4 = X(x,z,t) = Ae"sin(4x-2t)- e-pZdpcos2t, ( 3 a )  

where A = 4 1, f(s) e4s ds, 

u@) = -~ ( 3 4  

and A and a@) are used consistently elsewhere to represent these quantities. 
This is expected - a local disturbance near to the wavemaker and further out a wave 

with crests parallel to the wavemaker. The cross-wave which we expect will be present 
in addition to this solution, so to distinguish them we write 

# = ll.(x, y, 2 ,  t ,  8 )  +x, 6 = r(z ,  y, t, 4 + 6, (4a, b) 

and substitute these into the equations of motion (2). Further, we make expansions 
of the boundary conditions for small E about z = 0 and x = 0. The equations then 
become 

V2$ = 0, (5a)  

where 

where 

on x = O ,  (5e) 
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and we wish to solve these for @ and 7. As initial conditions for the problem, we shall 
assume that the solution is at first close, in some sense, to the linear solution, so that 
$ and 7 are initially small. 

2. The possibility of resonance 
So far we have been exact. II. must be at least O(s)  to account for the forcing terms 

on the right-hand side of ( 5 ) .  However, we also expect to find the equations permit 
a y-dependent instability, the cross-waves, for which I+ attains a greater order of 
magnitude. This may be investigated by attempting a regular perturbation expansion 
of ( 5 )  based on some proposed form for the basic cross-wave. If a resonance 
mechanism is present then sooner or later the higher terms of such an expansion must 
contain a term that is not periodic. Such a non-uniformity in the regular expansion 
can have various causes, but when it represents a resonance effect it is interpretable 
as a means by which energy is being fed slowly into a particular mode through the 
nonlinear interactions, i.e. by way of the Reynolds stresses. In our particular case 
it must provide the energy to sustain the cross-wave whose existence we originally 
proposed. This is a considerable restriction on the resonant modes possible, for then 
the resonant modes must have the same form as the growing terms, while the 
structure that one finds for the growing term itself depends on what was initially 
assumed about the resonant modes. That everything is consistent establishes the basic 
forms that any resonant modes can take. 

If one makes the simplest assumption, that the cross-wave is unforced as a first 
approximation, then to satisfy ( 5 )  it must have the form 

(6) ' 0  = 1; J: B(k, m) e(k2+m2)1z cos kZeimY eki(k2+m)?t dm dk, 
CO 

where B is arbitrary, and the second order of approximation has the equations 

VZ$' = 0, 

+ 1 3' = F(x ,  y , z , t )  on z = 0, 
a t 2  aZ 

-- a'' - G(y, z ,  t )  
ax 

on x = 0, 

where ( 7 b )  is obtained by elimination of 7 from ( 5 b )  and (5c),  and F and G are forcing 
terms which stem from the nonlinear interactions. 

These can be solved in principle using transforms. The part of p1 relevant to the 
instability is 

where F and 
If we assume that the resonance mechanism occurs by direct interaction of the 

forced solution with the resonance mode, then this integral must have a singularity 
for all modal values that are present in (6), i.e. for all values of k and m for which 

are multiple transforms of F and G. 
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B(k,  m) =k 0. When the appropriate terms in F ,  the interaction of $o with the primary 
wave x whose form (3.1) is known, is examined we find that any wave packet 
cosKxeiMgeiQt of the resonant mode will have its y-dependence unchanged by 
interaction, while the frequency of the wave packet is shifted by two units. Thus if 
(8) is to produce a term of the same form as the original wave packet we must certainly 
have 52 = f 1. Examining (8) further, it is easy to verify that the interaction of such 
modes with the wave component of x cannot lead to any resonance, while interaction 
with the remaining part of x leads to a continuous k-spectrum for F i n  (8). But then 
the integral can never be sufficiently singular for our purposes unless Q2 = w2 = IM, 
whereupon there is a singularity of O(kW2)  and not O(k-l) at k = 0. That the 
singularity in (8) is at k = 0 tells us that K = 0 so the first-order approximation to 
the cross-wave can only be of the form 

@o = Re { (ao eiY + Fo e-’y) ez-it}. (9) 

The result K = 0 could be expected on physical grounds since this is the only 
wavenumber for which the group velocity in the x-direction is zero (to first order). 
This is necessary because the energy feed into the wave is small, occurring via the 
interaction of the small nonlinear terms. Thus a non-zero group velocity, which would 
allow the energy to escape at  an order of magnitude faster than it is supplied, cannot 
be possible. 

This section has been dealt with briefly : similar results were obtained by Mahony 
(1972) by use of integral equations. 

3. The asymptotic expansion 
So far we have only established that a resonant mode of the form (9) has the 

possibility of existence, and it remains to be shown that it actually does exist. We 
shall establish this using a version of the method of multiple scales. 

The functions a. and Po in (9), only constant as a first approximation, vary slowly 
with x, y, z and t. The first task is to determine the correctly scaled variables, and 
also the order of magnitude of the resonant mode $o. This is done in the usual manner 
of selecting scalings which, in higher-order equations, produce balanced terms for the 
resonance component. Strictly, then, we must determine how the higher-order 
equations behave before we can begin. For presentation purposes it is easier to just 
quote the results that we need, and the reader can relate them to later sections as 
he comes to them. 

The resonance equation is essentially the Fourier (5) transform of the (cosy)- 
component of the O(e2) terms of ( 5 b )  and (5c). This is not obvious since the forcing 
term found above from the direct interaction of $o and x is O(e) ,  and one would expect 
the solution of the problem to occur at this order. However, it is the Fourier transform 
that matters, and the Fourier transform of such products is smaller by an order of 
magnitude than the Fourier transform of terms which depend solely on the scaled 
variable. If the scaled 2-variable is X, and the scaled t-variable is r ,  then the terms 
that one obtains for comparison of orders of magnitude are 

where the first of these terms comes directly from the linear terms of ( 5 b , c ) ,  the second 
is the contribution to i3ll.fa.z from (5a), the third is the forcing term and the fourth 
is the second interaction of the resonance mode. The third term depends on x and 
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X ,  while the others depend on X only. For equal importance of all terms 

x = E X ,  7 = €2t  (11) 
and @o = 0(1), from which we may propose the expansion 

There is no need for a stretched z-scale, since the expansion is regular in the 
z-direction. A more complicated situation results from considering the y-direction. 
As long as the region [0, I ]  is bounded, the expansion will be regular in y, and so it 
is possible to proceed without introduction of a scaled variable. However, to satisfy 
the conditions (5fl on the sidewalls, a. = Po, so that 

(13) 

while also the wall separation must be a multiple of the wavelength, 1 = nn 
(n = 1 , 2 , 3 ,  . . .). This will not be exactly true in a general situation, but solutions are 
still possible as long as l /n  is sufficiently close to an integer. ‘Close’ is defined by the 
requirement that the side boundaries have no effect greater than those represented 
by the terms in (lo), and this implies that 

k0 = cosy ez [C(X ,  7) cost + D ( X ,  7 )  sin t ] ,  

(1+Ac2)1 = nn, (14) 

where A can be constant O(1).  Thus A acts as an arbitrary detuning parameter. This 
relationship defines a unique cross-wave providing the channel width 1 is o ( E - ~ ) ,  but, 
when 1 is even bigger than this, more than one value for n, and hence A,  is possible. 
Indeed, if 1 were to become infinite, a continuous spectrum could be obtained for A, 
and one sidewall condition would have to be replaced by a radiation condition. It 
is clear what is happening here: it is the side boundary conditions that determine 
the cross-wavelength, but for resonance to exist this wavelength must be very close 
to 2n. This determines the wavelength uniquely unless the channel breadth is 
exceptionally large, when more than one such wavelength is possible. 

We shall ignore the interesting possibilities of large 1, and confine our attention to 
a single cross-wave mode by taking 1 = O(1). However, since the channel width 
appears to be a natural length for the problem we shall introduce a variable based 

(15) 
on it by nzK 

Y = F y  = (l+A€2)?J, 

and then eliminate y from the equations in favour of Y .  (The treatment is distinctly 
different to that of x and t, where the scaled variables X and T are introduced in 
addition to x and t . )  The changes produced are minor: (5a)  is affected at second order, 
while the side boundary conditions become easy to apply. 

The new variables (1 1) are added to the equations (5 )  in the normal way by writing 
a/az+ea/aX for a/ax, and a/at+e2a/a7  for a/at. The expansions (12) are also 
substituted into the equations, and terms with equal orders of magnitude are equated 
to one another. The equations as far as 0 ( e 2 )  are needed and are listed later as they 
are solved. 

4. Development of the equations 
The sets of linear equations that result can in principle be solved, but in practice 

present immense labour. Fortunately, only a small fraction of the full solution need 
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be computed if obtaining a uniformly valid first expansion for the cross-wave $o is 
our sole objective. Consider the following diagram, which represents schematically 
how the asymptotic series develops by nonlinear interactions. 

Lowest order terms Terms of first interaction 
Terms of second 
interaction 

$21 = $11 $0 

$21 = $11 x 
$ 1 , = f ( X ) ( e 2 " + c ~ ~ ? Y + c o s ~ Y t . 2 i f )  

cross-wave -cross-wave 

$ o  = f(X) cos Y eP 

$23 = $ 1 2  $ 0  

$24 = $12 x 

$25 = $13 $ 0  

lLlZ = f ( x ,  x) cos Y ( e l f  + e3it) 

cross-wave -normal wave 

$26 = $13 x 

$ 13 =Ax) i 1 + e4if) 

normal wave-normal wave 

x = f i x )  e*P 

$11 = $14 $ 0  

Boundary conditions - $14 =Ax)  i I  + e4") + cos Y {AX) eir 

* $19 
Cubic interactions 

Boundary conditions - $20 

I n  the diagram, as in the discussion, @represents both $ and 7, and x represents both 
x and 5. One must keep in mind that the final equation for k0 is the Fourier transform 
of the cos Y component of the first time harmonic. Such terms, with the correct order 
of magnitude, can only be obtained in a limited number of ways. 

The zeroth-order term is @,. The first-order term is k1, and the components of this 
are generated in one of four ways. The parts of it are (i) kll, formed by $o interacting 
with itself, (ii) $12, formed by $o interacting with x, (iii) $13, formed by x interacting 
with itself, and (iv) which originates with the boundary condition a t  x = 0. The 
side boundary conditions are automatically satisfied at this order and do not produce 
any terms. The different forms that these components take are illustrated in the 
diagram. Neither @ll nor $13 is able to  contribute immediately to the resonance 
equation whereas both $12 and @14 contain a singularity which directly affects it. 
These singularities, which have the same form, could be treated together, but are dealt 
with in different sections to  help comparison with earlier work. The singularity in 
kI2 was noticed by earlier workers, but the singularity in yk14 was overlooked. They 
are both of the type discussed in $2. The procedure adopted is conventional whereby 
prevention of the singularity determines the value of a$o/aX at X = 0, which thus 
furnishes the boundary condition of the final equation for @o.  

I n  the next stage of the analysis, a t  second order in E ,  the only relevant terms are 
functions of X only, completely independent of the short scale x. They must also have 
factors of cos Y and el'. Such terms cause a different type of singularity to that found 
in the first-order terms, and its removal produces the resonance equation. Once again, 

3 F L M  138 
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however, terms independent of x and with the correct ( Y ,  t)-dependence can only be 
obtained from the second-order interactions in a limited number of ways. We now 
discuss these in detail. 

Of the ten components of $, in the diagram, eight are generated by interaction 
of $1 with either $o or x, If the interaction is with $o, which is independent ofx,  
we need only have retained terms in $l which themselves are independent of x. If 
the interaction is with x, we need only consider the interaction with its wave 
component, and since this has a factor of e4ix it follows that we need only retain the 
terms in $l that have a factor to cancel this. These two types are the only terms that 
need to be explicitly evaluated when calculating @l, and this substantially reduces 
the labour involved. It turns out that $11 has terms independent ofx,  and so $21 

contains useful terms, while $12 has a factor of e-4ix, and thus $24 must be determined. 
None of the other six components 9,,, SlrZs, $26, +,,, $28, however, need be 
calculated either because the $1 component has no useful x-behaviour, or because 
the time dependence is not right. 

Besides the above, there are two other possible sources of $, components. Terms 
in $,, are forced by triple interaction of $o and x, but here again only a limited number 
of terms need be retained, and the part independent of x is easy to calculate. The 
final term $20 is the component forced by the side boundary conditions. The boundary 
condition at  the wavemaker causes a singularity of a different kind and can be 
neglected . 

Thus it is rare that any term has to be found in full. Because of this the equations 
are not presented en bloc. Instead, equations for each component are presented 
separately and then solved to obtain the fraction needed. Where the full solution 
is not calculated the expression that contains the relevant part of that particular 
component is denoted by an asterisk. Similarly, the wave component of x (or l), 
which is the only part capable of producing an x-independent term, is denoted by x* 
(or E * ) .  

5. The lowest-order terms 
The equations are v2$o = 0, 

on z = 0, 

with other boundary conditions homogeneous. The solution is 

@o = cos Y ( C ( X ,  7) cost + D(X, 7) sin t )  ez, (17a) 

v0 = cos Y(C(X,7)sint--D(X,7)cost). (17b) 

6. The determination of $11 ($o $o terms) 
The equations are V2@,1 = 0, 
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with other boundary conditions homogeneous. It is straightforward to solve these 
equations after substitution for $o and vo from (17) .  The solution is 

$11 = 3 2 C D  cos 2t + (D2 - Cz)  sin 2t},  (19a) 

(19b) yll = cos 2 Y{ (D2-Cz)  cos 2t-  2CD sin 2t+ (D2+ Cz)} .  

7. The determination of $lz (cox terms) 

The equations are V2$lZ = 0, 

where we are partitioning $o into two parts: 

$o = $hl) + $62) = cos Y e2 [(C(l) +C@))  cost + + sin t ] ,  (21 )  

since exactly the same form of singularity will appear when calculating in $9. The 
distinction between these singularities is, of course, entirely artificial, being a 
consequence of the way we have grouped second-order terms together in blocks 
related t o  the way those terms originate, and only the totality of all the terms 
together has any real significance. Thus the form of $o must be such as to  eliminate 
the total singularity in $12 and $14. We arrange for this to happen by defining $hl) 
to be the part of $o that  eliminates the singularity in $12, and $L2) to be the part 
that eliminates the singularity in $14. This allows us to  continue with our conceptual 
differentiation of the two types of terms. Although the conditions that we obtain on 
the separate functions @hl) and $h2) then have no individual significance their sum 
will produce a real condition which must be satisfied by the function $o. 

The other boundary conditions are homogeneous. 
We begin by eliminating vlz from (20b,  c ) ,  and continue by substituting for x and 

6 from (3). Since yo = -[a$-,/at],,,, one thus obtains 

!?% a'1z - - 8 8 A ~ s i n ( 4 ~ - 2 t ) + 1 6 A $ ~ c o s ( 4 ~ - 2 t )  a$ 
at 

+-- 
a t 2  aZ 

(p2 + 2 4 )  a(p) e-p5 dp 
at 

a, 

- 16$0 sin 2t 1 a(p)e-ar dp on z = 0. ( 2 2 a )  

Since the non-homogeneous terms all have a factor of cos Y ,  we may assume that 
the same is true of the solution. Thus if we now take the half-range Fourier cosine 
transform (which we denote by a bar over the variable) of ( 2 0 a )  then i t  can be solved 
to show that 

0 .  

= h(k,  t ;  X) cos Ye(l+k2)'e+ - (22b)  

where h(k, t ;  X )  is arbitrary. 

3-2 
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This enables us to take the transforms of (20d), which, if we also substitute for 
a@),  becomes 

d(4- k)  sin2t- ___ 
16-k2 cos 2"1 

d ( 4 - k )  cos2t+ 8sin- 
16-k2 

eks] ds} 
k3 + 4k2 -24k- 96 a$ 64 

+-3cos2t  2f(0)+2 
at { 1 ,.f(') [m e4s+ 16 - k2 

Finally we substitute explicitly for from (17a), and so obtain first and third 
time-harmonic factors on the right-hand side, factors which we assume to be 
correspondingly present in the solution forced by these terms. The third harmonic 
causes no problem, but the first harmonic gives rise to a singularity in the Fourier 
transform (22a) a t  k = 0. This is in fact part of the same singulairity found earlier 
in $2, and it is important in forcing the cross-wave. 

To prevent singular behaviour at this order we have to select the value of a$bl)/aX 
at X = 0 so that the singularity vanishes. For this to happen, we must choose 

(23a) 
a$b" 
ax - = H(Csint+Dcost)cos Yez a t  X = 0, 

where H =  4rmf(s)ds-2f(0).  

Once this is done, the solution is regular, and in principle may be calculated. 
Fortunately only a small part of the solution need be evaluated, since most of the 
terms cannot interact at next order to produce a resonance term. The first and third 
harmonic factors that we have a t  present would have to react with x in order to obtain 
the correct time dependence. Further, only reaction with x* can give terms 
independent of 2, and this is only possible if there is an e4iz factor to eliminate the 
x-dependence of x*. Such terms do exist : in fact, as might be expected, they are the 
terms forced in the present-order solution by x* reacting with They are 

$& = Acos Yed17Z{+(l + 4 1 7 )  [Ccos(4~-t)+Dsin(4x-t)] 

- &(27 + 3 4 17) [C cos (42 - 3t) - D sin (42 - 3t) I}, (24 a) 
q-& = Acos Y(i(11-417) [Csin(4x-t)-Dcos(4z-t)] 

+&( - 31 + 9 4 17) [C sin (42 - 3t) + D cos (42 - 3t)l. (24 b) 

8. The determination of 

contribute at next order. Thus the equations reduce to 

(x2 terms) 
We need only calculate the steady component, since the 4th-harmonic cannot 

?!!% = steady part of r!: -521 on z = 0, aZ 
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qT3 = steady part of -A[("")' 2 ax + (2)' - 6 2 1  on z = 0, (25c) 

and other boundary conditions are homogeneous. 
We now substitute for x and 6 from (3), and the equations are solved as usual by 

a Fourier cosine transform. $:3 turns out to have a logarithmic singularity for large 
x. However, to  contribute a t  next order i t  is Q$T3 which must remain finite for 
large x. It obviously decays for x = 0 ( 1 ) ,  and so we can write 

$f3 = 0, (26a) 

TT3 = 0. (26b) 

while qT3 is easily calculated from (25c) to be also zero for large x. So 

9. The determination of +14 (the boundary terms) 

a2$ 
The equations are 

va' - - 2 O -  
ax ax - O, 14 - 

+yI4 = 0 on z = 0 ,  (27c) at 

(27 d )  

(27 e) 

$14+0 as z+--oo. (27f 1 

8'14 

ay 
-=0  on Y=O,nn,  

We pursue the usual course of (i) explicitly substituting for the non-homogeneous 
terms, (ii) assuming the ( t ,  Y)-dependence of the solution is the same as that of the 
forcing terms, (iii) applying the Fourier cosine transform to (27a), (iv) determining 
any arbitrary functions from the surface boundary conditions (27 b,  c). 

It is unnecessary to calculate the fourth time-harmonic component of the solution 
since it cannot interact a t  next order to yield a resonance term. The third harmonic 
could contribute, however, and must be calculated. For large values of x i t  can be 
shown to satisfy 

(28) 

and so this also cannot interact to form any resonance terms, since they must be 
independent of the coordinate x, and hence it can be neglected. Similarly we may 
neglect the steady component of $14 since i t  decays to zero over a distance x = O(1). 
There is no second harmonic component to be looked at. The remaining discussion 
concerns the first harmonic component only : the boundary condition ( 2 7 d )  becomes 

third harmonic of kI4 - constant ei(d80x-3t) cos Yenz, 

cost+ - ao62) sin t)} , (29) [F] 2 - 0  = cosTez (2 idf(Cosint+Docost)-  dz ax 
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where a zero subscript on C or D denotes its value at X = 0. Equation (29) can be 
used to take the Fourier transform of (27a), and i t  is 

sin t)} . aDi2) 
-- cost+ ~ ax a2gT4 (k2+1)$T4 = cos Y e z { ~ ~ ( C , s i n t + D , c o s t ) -  

a22  

(30) 
The general solution of this which satisfies the condition (27 f )  is 

and the function B, is determined from the surface boundary conditions (27b,c). 
Application of these yields 

As in $ 7 ,  the transform (31) must not be singular a t  k = 0, and to avoid this we 
are now forced to choose 

= KcosYeZ(Csint+Dcost)  at X = O ,  (33a) 
* 
ax 

where 

If we combine this result with (23), we have 

(34a) 

(34b) 

-=LcosYeZ(Csint+Dcost)  i V 0  a t  X = O ,  
ax 

df 0 

where L = H + K  = (4f(s)+ zezs)dds-2f(0). 
--m 

Equivalently we may express this as 

and so we are furnished with the boundary conditions that we shall need later after 
the resonance equation has been obtained. 

It is now necessary to continue and actually invert F,*, since interactions with $:4 

a t  next order do not produce any terms of resonance form. The only possibility which 
could achieve the correct time dependence is an interaction with x*, but x* contains 
an egis factor which +14 is unable to cancel. 

We must also consider whether there are any free modes in the solution for $l. 
The only possibility, of course, is a mode of resonant form, since other modes would 
radiate their energy away too quickly. However, a resonant mode in can'be 
neglected, since i t  cannot interact a t  next order to  produce any useful term. 
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10. The resonance equation 

Now that all the relevant first-order terms in the asymptotic expansion have been 
determined, we can continue to second order. Only those terms which have the 
resonance form need to be retained in the equations, which are thus 

$2+0 as z+--oo, 

(35f 1 -- w 2  - 0  on Y = O , n .  
ay 

These equations contain two different types of singularity. One of them we have 
already seen in $9. When one attempts to obtain a solution in the usual fashion, the 
Fourier transform of $: turns out to be singular a t  k = 0, with the degree of 
singularity being O(kP2) .  This singularity is due to  the contributions from the term 
2 a 2 $ , / a x a X  in (35a) ,  and the boundary condition (35e). Clearly this cannot be 
allowed, and its elimination determines the value of ~t,!fl/~X~x-o, just as a$o/aXlx,o 
was determined in $9. This boundary condition would be necessary were we intending 
to proceed in calculating higher-order terms. 

More important, there is another singularity in the Fourier transform at k = 0 of 
order S ( k ) ,  where S(k)  is the delta function, which is caused by the terms independent 
of x. These terms must cancel one another or a solution is impossible, and this 
restriction leads to the resonance equation. After substitution for the known terms 
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on the right-hand side of (35a-c), they reduce to  

Vz@ = ez cos I.’ [( - CIN-2hC) cost + ( - D”- 2hD) sin t], ( 3 6 4  

x cos Y (C cos t + D sin t) on x = 0, (36b) 

a7 a2 at 1 __ w: +r,* = [&(C2+D2)+&(69-19t/17)A2- - 
at 

x cos I’(Csint-Dcost) on z = 0. (36c) 

These are easy to analyse by Fourier transform. 9; has the form 

$: = izez cos Y [( -C“- 2hC) cost + ( -D”-2hD) sin t] 

+ezcos Y (B,(X)cost+B,(X)sint)+forced terms, (37) 

and substitution of this in (36b, c )  finally furnishes two equations, one the cost 
component and the other the sint component. They are 

where J =  -h++(5t/17-19)A2,  (39) 

and the boundary conditions are given by (34). 
Equations (38) can be regarded in another light as the complete Fourier transform 

of the original equations. By a complete Fourier transform we mean that the 
definition of the Fourier transform as an infinite integral is applied for the complete 
variable x, so that the domain of integration is 0 < x (or X) < co, and X is not 
regarded as constant in the process of forming the integral. This is a non-uniform 
operation on the perturbation expansion since functions of X only will have 
transforms larger by E than functions of x only. Thus, after substitution of the 
perturbation expansion (12) into the equations of motion, we must not immediately 
equate the different orders of magnitude, but must first apply the complete Fourier 
transform, and then equate the different orders of magnitude. From the knowledge 
that we have gained in earlier sections about the form of the perturbation expansion, 
it is easy to see that the leading-order terms in the equation that one obtains by this 
for the resonance component, are the same as one obtains by a Fourier ( X )  transform 
of (38). This approach is easier to understand but more difficult to  formalize. It was 
used to obtain the scalings originally in $3. 

Equations (38) are wave equations with the terms which are second derivatives 
with respect to X representing radiation of energy along the channel, and with the 
terms which follow representing phase changes in the wave caused by nonlinear 
interactions and by the deviation of the channel width from the perfect resonant 
wavelength. The boundary conditions (34) represent an energy input in the region 
of the wavemaker. (Remember that x is asymptotically small compared with X, so 
that X = 0 can represent a finite region on the x-lengthscale.) In  fact the detailed 
calculations have shown that work is done on the cross-wave both by the Reynold 
stresses and also directly by the wavemaker itself. The former produced the H-term 
of (23) and the latter the K-terms of (33). The connection of the energy input to the 
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radiation term can be seen by multiplying (38a)  by C, ( 3 8 b )  by D ,  subtracting the 
two results, and finally integrating with respect to X from zero to an arbitrary point 

The left-hand side represents the change in energy in the cross-wave in the region 
[0, XI, and the right-hand side shows that energy is fed into or extracted from the 
wave at  X = 0, according to whether L(Ct- Di) is positive or negative, while energy 
radiates out of or into the region according to the sign of CaDlaX-DaClaX a t  
X .  In particular, in the early development of any wave when one would expect C 
and D to be zero a t  large distances the growth or decay of the wave depends entirely 
on the former of these two terms. Notice that there is no distributed source in this 
equation, which shows that, as other authors have commented, the cross-wave 
extracts energy only in the complex flow region near the wavemaker, and is incapable 
of extracting energy from the primary wave generated by the wavemaker even though 
this exists over much greater distances. 

1 1. Discussion 
It is interesting to compare our final equation with the work of previous authors. 

Since their work was done on the basis of small cross-wave amplitude we may begin 
by neglecting the nonlinear terms on the right-hand sides of (38). The linear equations 
that result are then equivalent to the integrodifferential equations studied by Mahony 
(1972). To show this, one takes the half-range Fourier cosine transform of the 
equations with respect to the variable X. The boundary conditions (34) then 
introduce an extra term into each equation which can then be expressed in terms of 
the transform variables c and 4 using the Fourier inversion theorem. For instance 

- l a D  aC - 

a7 2 ax 
(38a) becomes 

-2- +gkZD+JD = -2 = BLC, = gs," Cdk. 

These equations are the same SLS those studied by Mahony except for the difference 
in the values of the constants J and L. Using Laplace transforms, he proved in certain 
situations the existence of a growing mode of solution, hence showing that the 
solution C = 0, D = 0 is unstable. One can now do slightly better than this by solving 
the linearized differential equation, whereupon one can deduce that Mahony 's 
unstable mode is a solution of separable form, namely 

C = B{[1- i) $ e-px + (1 + i )  pi e - q X }  e't, 

D = B{ ( - ( 1  + i) q* e-Px - (1 - i) pi e-gX} eYt, 

where B is an arbitrary real constant, and 

v2 = &(L4-4J), p = (2J-4iv)i, q = (2J+4iv)&, (40) 

with p and q having positive real parts. 
Barnard & Pritchard (1972) in their experiments on cross-waves found good 

agreement with (40) for the growth rate of small cross-waves, even though the values 
of L and J that they used were derived from Mahony's work and were not actually 
correct. We shall show that this agreement is fortuitous in that, for the experiment 
performed, the terms not discovered by Mahony happen to have numerically small 
values and so can be neglected without serious error. 

Barnard & Pritchard's wavemaker was a plane which pivoted about a line on the 
bed of their channel with maximum angular displacement 8. For convenience we will 
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only consider their second mode experiment where the channel depth d = 16.4 cm 
and the frequency of oscillation was varied close to the value 2a = 28.3 s-l. Then the 
lengthscale g / a 2  = 4.90 cm is reasonably less than the channel depth and we can 
expect our solution for infinite depth to  be applicable. The maximum wave amplitude 
a = do, so that e = acr2/g = 3.358 cm, while the wavemaker itself is described by the 
equation 

If we now express equation (40) for the growth rate in dimensional form we have 

evaluated as H = 

and 

where w2 = m g / b  must be within O(e2) of az, and in practice can only be found to 
that accuracy by using the empirical results, H is defined by (23.2) and can be 

: ( 2 d a z / g ) - 2  = 6.5, K is defined by (33b)  and can be evaluated as 

K z g/2da2 = 0.15, 
/ M  \ 2  

Now the terms that were not found by Mahony are those represented by K and 
M .  It can be seen, however, that  these only make a relatively small contribution to 
(41) and that i t  is acceptable to neglect them, leaving 

Ye% = w{(--) a2d 04+ ($ - 1 ) y  

which was the expression to which Barnard & Pritchard successfully fitted their 
experimental data. Thus we may take their quite excellent agreement as confirming 
our own theoretical expressions. (To be precise, in order to fit their data they had 
to add on to the growth rate ve2r an arbitrary constant which they determined 
experimentally. This constant had a negative sign and so represented a damping effect 
on the wave, presumably due to  effects not considered in the analysis.) 

Finally i t  should be mentioned that equations (38)  can also be shown to agree with 
those of Garrett, although this is a lengthy procedure. Garrett assumed that the tank 
was short with the cross-wave not varying a great deal along its length. Thus one 
must first average a linearized version of (38)  along the whole tank, using (34)  to 
evaluate the integral of the second derivatives with respect to X. Now Garrett's final 
(Mathieu's) equation is non-uniform, containing terms O(1) and also O ( E ) .  Hence to 
compare this equation with ours one must first apply uniform expansion techniques 
to his equation. Finally, converting notations between the papers, one obtains the 
same equation, except for the same differences due to neglected terms that we have 
already noted in Mahony's paper. 

At the request of one of the referees, I made a numerical study of (38) with the 
nonlinear terms present. To do this values had to be assumed for the unknown 
constants. Since J ,  which depends so critically on channel width, would be almost 
impossible to determine in a real experiment, I took the easiest option and set J = 0 
throughout. With J zero i t  is possible to set L = 1 without loss of generality since 
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this value can always be obtained by suitable scalings. It seemed simpler to avoid 
the problems that would be associated with an infinite channel, and to work with 
a channel of finite length (finite on the X-lengthscale, although long on the 
x-lengthscale). The end of the channel was chosen arbitrarily to lie at X = 1. As 
boundary conditions a t  that  point I selected 

ac aD _-  a x - O ,  - = 0  a t  X = l ,  ax 
which a t  the time I thought would represent a fixed vertical wall, acting as a 
wavemaker of zero amplitude so that ‘ L ’ = 0. This interpretation may not be correct, 
however, since a wall would reflect the primary wave, and such a reflection has not 
been taken into account in my analysis. Nevertheless these conditions are among the 
simplest that  one can consider. 

As initial conditions I took 

C = D = 0 . 0 3 h ( 2 + 2 X - X 2 )  at T = 0. 

The purpose of the X-dependence was to allow the initial conditions to satisfy the 
boundary conditions at both X = 0 and X = 1. The parameter h represents the 
magnitude of the initial value. The linear and nonlinear terms in the equations become 
comparable when C and D take values close to unity. This occurs a t  the initial moment 
for a value of h round about 10. Thus we may refer to the starting conditions as small 
if h < 10 and large if A 9 10. 

The equations (38) were solved by a finite-difference approximation. Since the 
explicit approximation scheme was unstable for all step lengths a semi-implicit 
(Crank-Nicolson) scheme was employed. However, this would have been expensive 
if applied directly to the nonlinear terms, since i t  would have involved alteration of 
the inversion matrix at each step, thus requiring repeated diagonalization in order 
to achieve solutions. Instead the nonlinear terms were treated as explicit terms, so 
that the matrix one had to invert depended only on the linear terms, and so was 
always the same. Hence it could be diagonalized once and for all a t  the beginning 
of the program. Then to obtain the semi-implicit approximation for the nonlinear 
terms a corrector step was added, allowing the desired form to be approached 
iteratively. For instance, (C2 + D2)  C was replaced by 

where a is a counter for the iterations. Initially one starts with an explicit 
approximation, i.e. ,Ci = CgVj ,  ,Di = D i , j ,  and the equations are then solved to 
produce a first interim solution for Ci,j+l and Di,j+l, say C; and D;, and the equations 
are resolved with this new explicit term. This procedure is then repeated until the 
maximum change over the whole interval is less than some specified error value ( 
was selected for this purpose). Provided that the iterations converge, the final solution 
approaches a limiting value which by definition is Ci,j+l, Di,j+l. Substitution of this 
limiting value for uDi in the representation of the nonlinear terms shows that, 
in the limit, these terms have the desired semi-implicit form. 

It is fairly easy to show that the numerical scheme was consistent, the approximation 
scheme being accurate to second order. It was also desirable to perform a stability 
analysis, but this was more difficult because of the presence of the nonlinear terms. 
However, if one arbitrarily neglects these terms, so as to obtain linear equations, then 
von Neumann’s method can be used. Essentially this is a local Fourier analysis of 
the numerical method, determining whether harmonic waves present in the solution 
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FIGURE 1. Wave profiles at different times for h = 1 
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FIGURE 2. Wave profiles at different times for h = 1. 

become amplified with time or whether they decay. It was found that the semi-implicit 
scheme was neutrally stable t o  the growth waves of any wavelength. Further, one 
could also consider schemes where the averaging of the second derivatives in x were 
not 1 : 1.  When the averagings were biased towards a more explipit approximation 
scheme, the waves were found to  grow with time, and, when they were biased to- 
wards being fully implicit, they were found to decay with time. Now the former 
behaviour cannot be permitted because this means that the solution is unstable. 
However, since one would expect the equations to have solutions of wavelike form, 
the second type of behaviour, which would damp out waves, is also undesirable. Hence 
the precisely 1 : 1 semi-implicit formulation actually used would seem to have the most 
nearly ideal behaviour in this respec,t. 
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FIGURE 3. Wave profiles at different times for h = 1. 
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FIGURE 4. Graphs of C at X = 0 against 7 for different initial values. 

A similar analysis can be performed with the nonlinear terms present by linearizing 
the equations about a solution assumed known and by looking for the growth of a 
small error term. However, for the von Neumann method to apply one must treat 
the known solution locally as if it  were a constant. Results so obtained are thus only 
applicable to waves which are short compared with the lengthscale on which the 
solution is varying. Within this limitation, one again finds that the semi-implicit 
approximation is neutral to the growth or decay of waves. 

We now discuss the numerical results. Figures 1-3 show the x-dependence of the 
coefficient C a t  various times for the starting value A = 1. It can be seen that once 
it develops away from its nearly uniform initial state it develops into a rather tame, 
oscillating wave. The variable D has a similar behaviour. Also other initial conditions 
for C and D lead to similar x-profiles. Since our intention is only to show the form 
of the solution we have not reproduced these other curves. 

Figure 4 shows the variation with time of the value of C a t  x = 0 for various starting 
values of A. When A is small, the nonlinear terms in the equation are also small, and 
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FIGURE 5. Graphs of c! at X = 0 against 7 for different initial values. I 
the initial behaviour should be governed by the linearized equations. This was 
confirmed for the case h = 1 by solving the linearized equations numerically with the 
same starting conditions. There was a check on this latter curve since a t  large times 
it must increase exponentially a t  a rate that  can be found by theoretical calculation. 
The exponent can also be estimated from the numerical curve and agreement was 
excellent. This curve is also plotted in figure 4. It can be seen that the nonlinear curve 
follows i t  closely until the value of C(0, t )  exceeds 0.5, when the nonlinear terms reach 
parity with the linear terms and modify the solution. The subsequent behaviour then 
appears chaotic, using this term in its technical sense of an apparently random but 
bounded oscillatory type of behaviour. A typical period of these oscillations is about 
three time units. 

A similar type of behaviour can be seen in figure 4 for the starting values h = 3 
and A = 5. There is an  initial smooth exponential growth followed by chaotic 
behaviour. The case h = 10 provides a watershed with the nonlinear terms neither 
negligible nor dominant at the initial moment. Some solution curves for larger h when 
the nonlinear terms are immediately dominant are given in figure 5. Chaotic 
behaviour is immediately obtained. Such curves were difficult to obtain, however, 
since the larger the nonlinear terms the worse was the convergence behaviour of the 
iteration scheme described above, and hence the finer the x- and t-steplengths needed 
to bring this under control. 

The relatively smooth behaviour of the A = 10 curve is interesting since i t  performs 
such regular small-amplitude oscillations. Larger starting values of h lead to large 
oscillations. Smaller starting values seem to produce solutions which ‘overshoot ’ the 
h = 10 solution and, having once obtained large values, also undergo large oscillations. 
Thus one is led to speculate that  some sort of stable behaviour might be associated 
with intermediate initial values. 

Figure 5 also demonstrates another typical property of chaotic behaviour, that  
small changes in the initial conditions do not produce changes in the solution that 
are uniformly small with time. The behaviour illustrated is typical. The curves 
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diverge very slowly from one another until some critical difference is reached, 
whereupon a rapid divergence follows, and the subsequent paths are entirely 
uncorrelated. The smaller the change in the initial conditions, the larger is the time 
before significant divergence occurs. Conversely the larger the value of h the more 
sensitive is the solution t o  changes in A, i.e. the solution becomes non-uniform more 
rapidly for large starting values. 

This non-uniformity had an unfortunate consequence on the numerical method. 
Small changes in the mesh sizes of 1: and t produced small changes in the solution, 
but these small changes would slowly grow with time, reach a critical amount, and 
then switch onto another curve entirely. This non-uniformity in behaviour was much 
more sensitive to  changes in At than to changes in Ax. To illustrate, most of the runs 
of figure 5 were done with Ax = 0.0125 and At = 0.01 on the time range [0,50]. A 
run would then be validated by repeating the numerical integration but with 
At = 0.005. It would typically be found that the curves remain close until t = 30, 
whereupon rapid divergence of the same type as figure 5 would ensue. Thus the first 
run could only be considered as correct in the range [0,30]. If a further validation 
wasperformed, with At = 0.001 25 say, then the second and third curves might remain 
close until t = 35, say, followed again by chaotic divergence. Changes in Ax had a 
similar, but much weaker, effect. 

Now one point of interest about the equations is whether the solution always 
remains bounded or whether it can diverge to infinity. I had hoped to investigate 
this by following the solution curves to very large time values. Non-divergence would 
not prove stability, of course, but divergence would definitely disprove it. 
Unfortunately the above difficulty imposed a severe limitation on this programme. 
It was often found that the solution diverged, especially on earlier runs when much 
coarser mesh sizes were used, but i t  was always found that these divergences were 
outside the solution’s range of validity, and that they disappeared when finer meshes 
were used. Thus the stability question still remains open. 

Finally some comments of a general nature. Many people have pointed out to me 
that (38) is an example of the nonlinear Schrodinger equation. If so desired both 
(38) and (34c) can be expressed in terms of the complex variable C+iD and its 
complex conjugate. However, i t  is not clear to me what useful conclusions can be 
drawn from this. As exemplified by the instability condition (40) the physical nature 
of the solution is strongly influenced by the self-interaction represented by (34c). 
Most published work on the NLS involve waves on an infinite domain with no 
boundary conditions at all. A thorough study of the NLS on a semi-infinite expanse 
was recently published by Aranha, Yue & Mei (1982), but even there the waves were 
driven by an  explicit nonhomogeneous term in the boundary conditions, rather than 
by the implicit, homogeneous form of (34 c ) .  

While the present equations could be solved by sufficient numerical effort, there 
is the question of whether this is worthwhile, given that there is no likelihood of the 
results agreeing with experiment. For (38) and (34c) only represent the slow evolution 
of a cross-wave due to modulation by nonlinear effects. As discussed by Chu & Mei 
(1971), it  must be borne in mind that, because the changes are slow, other forces which 
one would normally consider negligible, such as viscosity and surface tension, also 
have a long time in which they can act upon and affect the wave profile. That such 
forces indeed cannot be neglected even in the linearized case is shown by the empirical 
damping coefficient that  had to be introduced to get agreement with the experiments 
of Barnard & Pritchard (1972). Thus the present work should be considered as a 
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preparatory study. It deals with the most complicated of the modifying forces, but 
the effects of the other forces must be synthesized with it if a full description of 
cross-waves is to  be obtained. 

I wish to thank Ian Gladwell for his generous assistance and advice with the 
computing. 
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